**International Journal of Engineering, Science and Mathematics** 

Vol. 5 Issue 4, December 2016,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

# ON αG\*-PRECLOSED SETS IN TOPOLOGICAL SPACES

# Rajeshwari K.\*

# T. D. Rayanagoudar \*\*

#### Abstract:

The aim of this paper is to introduce the new class of closed sets called  $\alpha g^*$ -pre-closed sets in topological spaces and some of their properties are investigated. The class of  $\alpha g^*$ -preclosed sets lies between the class of preclosed sets and the class of g\*p-closed sets.

## Keywords:g-closed sets;gp-open sets;ag\*p-closed sets;

## 1. Introduction:

Levine [9] introduced and studied the generalized closed (briefly g-closed) sets in 1970. Maki et al [12,13, 14] and Veera Kumar [20] introduced and studied the concepts of generalized  $\alpha$ -closed (g $\alpha$ -closed) sets and  $\alpha$ -generalized closed ( $\alpha$ g-closed) sets, gp-closed sets and  $\alpha$ gr-closed sets respectively in topological spaces.

In this paper, we define and study the properties of  $\alpha g^*$ -preclosed (briefly  $\alpha g^*$ p-closed) sets in topological spaces which is properly placed between the class of preclosed sets and the class of  $g^*$ p-closed sets.

<sup>\*</sup> Department of Mathematics, Government Arts and Science College, Karwar, Karnataka State, India,

<sup>\*\*</sup> Department of Mathematics Government First Grade College, Annigeri, Karnataka State, India,

#### 2. Preliminaries:

Throughout this paper, the space  $(X, \tau)$  (or simply X) always means a topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, cl(A), int(A) and  $A^c$  denote the closure of A, the interior of A and the complement of A in X respectively.

**Definition 2.1:** A subset A of a topological space  $(X,\tau)$  is called a

- (i) regular open set [17] if A = int(cl(A)) and a regular closed set if A = cl(int(A)).
- (ii)  $\alpha$ -open set [15] if A  $\subseteq$  int(cl(int(A))) and a  $\alpha$ -closed set [12] if cl(int(cl(A)))  $\subseteq$  A.
- (iii) pre-open set [10] if  $A \subseteq int(cl((A)))$  and a pre-closed set if  $cl(int((A))) \subseteq A$ .
- (iv) semi-open set [8] if  $A \subseteq cl(int(A))$  and a semi-closed set [3] if  $int(cl(A) \subseteq A$ .
- (v) semi-preopen set [2] (= $\beta$ -open set[1]) if A  $\subseteq$  cl(int(cl(A))) and semi-preclosed [2](= $\beta$ closed set [1]) if int(cl(int(A)))  $\subseteq$  A.

The  $\alpha$ -closure of A is the smallest  $\alpha$ -closed set containing A. and this is denoted by  $\alpha cl(A)$ . Similarly the semi-closure (resp. pre-closure and semi-pre-closure) of a set A in a topological space (X,  $\tau$ ) is the intersection of all semi-closed (resp. pre-closed and semi-pre-closed) sets containing A and is denoted by scl(A) (resp. pcl(A) and spcl(A)).

Definition 2.2: A subset A of a topological space  $(X, \tau)$  is called a

- (i) generalized closed (briefly g-closed) [9] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open in  $(X,\tau)$ .
- semi-generalized closed (briefly sg-closed) [4] if scl(A) ⊆ U whenever A⊆U and U is semi-open in (X,τ).
- (iii) generalized-semi closed (briefly gs-closed) [3] if scl(A) ⊆ U whenever A⊆U and U is open in (X,τ).
- (iv)  $\alpha$ -generalized closed (briefly  $\alpha$ g-closed) [13] if  $\alpha$ cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is open in (X, $\tau$ ).
- (v) generalized pre-closed (briefly gp-closed) [14] if pcl(A) ⊆ U whenever A ⊆ U and U is open in (X,τ).

- (vi) generalized semi-preclosed (briefly gsp-closed) [6] if  $spcl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open in  $(X,\tau)$ .
- (vii) generalized pre regular closed (briefly gpr-closed) [7] if  $pcl(A) \subseteq U$  whenever  $A \subseteq U$  and U is regular- open in  $(X,\tau)$ .
- (viii)  $\alpha$ -generalized regular-closed (briefly  $\alpha$ gr-closed) set [20] if  $\alpha$ cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is regular-open in (X, $\tau$ ).
  - (ix)  $g^*p$ -closed [19] if pcl(A)  $\subseteq U$  whenever A  $\subseteq U$  and U is g-open in (X, $\tau$ ).
  - (x)  $g^{\#}\alpha$ -closed [16] if  $\alpha cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is g-open in  $(X,\tau)$ .

## **3.** αg\*-preclosed sets in topological spaces:

In this section we introduce  $\alpha g^*p$ -closed sets in topological spaces and study some of their properties.

**Definition 3.1:** A subset A of a topological space  $(X,\tau)$  is said to be  $\alpha g^*$ -pre closed (briefly  $\alpha g^*p$ -closed) set if  $\alpha cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is gp-open in  $(X,\tau)$ .

The family of all  $\alpha g^*p$ -closed sets in a topological space  $(X,\tau)$  is denoted by  $\alpha g^*pC(X,\tau)$ .

**Theorem 3.2:** Every closed set is  $\alpha g^*p$ -closed set but not conversely.

**Proof:** Let A be a closed set in  $(X, \tau)$ . Note that  $\alpha cl(A) \subseteq cl(A)$  is always true and cl(A) = A as A is closed. So if  $A \subseteq G$  where G is gp-open set in  $(X, \tau)$ . Then  $\alpha cl(A) \subseteq G$ . Hence A is  $\alpha g^*p$ -closed set in  $(X, \tau)$ .

**Example 3.3:** Let  $X = \{a, b, c\}$  and  $\tau = \{X, \phi, \{a\}\}$ . Then the subsets  $\{b\}$  and  $\{c\}$  are  $\alpha g^*p$ -closed sets but not closed sets in  $(X, \tau)$ .

**Theorem 3.4:** Every αg\*p-closed set is g\*p-closed set.

**Proof:** Let A be a  $\alpha g^*p$ -closed set in (X,  $\tau$ ). Let A  $\subseteq$  U, where U is g-open and so it is gp-open set. Then  $\alpha cl(A) \subseteq U$ . Note that  $pcl(A) \subseteq \alpha cl(A)$  is always true. Therefore  $pcl(A) \subseteq U$ . Hence A is  $g^*p$ -closed set in (X,  $\tau$ ).

The converse of the theorem need not be true as seen from the following example.

**Example 3.5:** Let  $X = \{a, b, c\}$  and  $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ . Then the subsets  $\{a\}$  and  $\{b\}$  are g\*p-closed sets but not  $\alpha$ g\*p-closed sets in  $(X, \tau)$ .

**Theorem 3.6:** Every αg\*p-closed set is αgr-closed set.

**Proof:** Let A be a  $\alpha g^* p$  -closed set in  $(X, \tau)$ . Let G be a regular-open set and so it is gp-open set such that  $A \subseteq G$ . As A is  $\alpha g^* p$ -closed we have  $\alpha cl(A) \subseteq G$ . Therefore  $\alpha cl(A) \subseteq G$ . Hence A is  $\alpha gr$ -closed set in  $(X, \tau)$ .

The converse of the theorem need not be true as seen from the following example.

**Example 3.7:** In Example 3.3, the subset  $\{a\}$  is  $\alpha$ gr-closed set but not a  $\alpha$ g\*s-closed set in (X,  $\tau$ ).

**Theorem 3.8:** Every  $\alpha$ -closed set is  $\alpha g^*p$ -closed set.

**Proof:** Proof is follows from the definitions.

The converse of the theorem need not be true as seen from the following example.

**Example 3.9:** Let X={a, b, c} and  $\tau = \{X, \phi, \{a\}, \{b, c\}\}$ . Then the subset {a, c} is  $\alpha g^*p$ -closed set but not an  $\alpha$ -closed set in (X,  $\tau$ ).

**Theorem 3.10:** Every αg\*p-closed set is gp-closed set but not conversely.

**Proof:** Let A be a  $\alpha g^*p$ -closed set in  $(X, \tau)$ . Let  $A \subseteq U$ , where U is open and so it is gp-open set. Then  $\alpha cl(A) \subseteq U$ . Note that  $pcl(A) \subseteq \alpha cl(A)$  is always true. Therefore  $pcl(A) \subseteq U$ . Hence A is gp-closed set in  $(X, \tau)$ .

**Example 3.11:** In Example 3.3, the subsets  $\{a, c\}$  are gp-closed sets but not  $\alpha g^*p$ -closed sets in  $(X, \tau)$ .

**Theorem 3.12:** Every  $\alpha g^*p$ -closed set is gs-closed set but not conversely.

**Proof:** Let A be a  $\alpha g^*p$ -closed set in  $(X, \tau)$ . Let  $A \subseteq U$ , where U is open and so it is gp-open set. Then  $\alpha cl(A) \subseteq U$ . Note that  $scl(A) \subseteq \alpha cl(A)$  is always true. Therefore  $scl(A) \subseteq U$ . Hence A is gs-closed set in  $(X, \tau)$ . **Example 3.13:** In Example 3.3, the subsets  $\{a, c\}$  are gs-closed sets but not  $\alpha g^*p$ -closed sets in  $(X, \tau)$ .

**Theorem 3.12:** Every  $\alpha g^*p$ -closed set is gpr-closed set but not conversely.

**Proof:** Since every gp-closed set is gpr-closed and by Theorem 3.10, Therefore every  $\alpha g^*p$ -closed set is gpr-closed in (X,  $\tau$ ).

**Example 3.13:** In Example 3.3, the subsets  $\{a, c\}$  are gpr-closed sets but not  $\alpha g^*p$ -closed sets in  $(X, \tau)$ .

**Theorem 3.14:** Every  $\alpha g^* p$ -closed set is  $g^{\#} \alpha$ -closed set but not conversely.

**Proof:** Let A be a  $\alpha g^*p$ -closed set in (X,  $\tau$ ). Let G be a g-open set and so it is gp-open set such that  $A \subseteq G$ . Then  $\alpha cl(A) \subseteq G$ . Therefore  $\alpha cl(A) \subseteq G$ . Hence A is  $g^{\#}\alpha$  -closed set in (X,  $\tau$ ).

**Example 3.15:** Let X={a, b, c} and  $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ . Then the subset {a, c} is  $\alpha g^*p$ -closed set but not an  $g^{\#}\alpha$ -closed set in  $(X, \tau)$ .

**Theorem 3.16:** If A and B are  $\alpha g^*p$ -closed sets, then A $\cup$ B is  $\alpha g^*p$ -closed set in (X,  $\tau$ ).

**Proof:** If  $A \cup B \subseteq G$  and G is gp-open. Then  $A \subseteq G$  and  $B \subseteq G$ . Since A and B are  $\alpha g^*p$ -closed sets,  $\alpha cl(A) \subseteq G$  and  $\alpha cl(B) \subseteq G$  and hence  $G \supseteq \alpha cl(A) \cup \alpha cl(B) = \alpha cl(A \cup B)$ . Thus  $A \cup B$  is  $\alpha g^*p$ -closed set in  $(X, \tau)$ .





Where  $A \rightarrow B$  ( $A \leftrightarrow B$ ) represents A implies B but not conversely (A and B are independent).

**Theorem 3.18:** If A is both open and g-closed, then A is  $\alpha g^*p$ -closed.

**Proof:** A is open and g-closed. Let U be a gp-open set containing A.  $A \subseteq A$ , an open set. And A is g-closed. Therefore  $cl(A) \subseteq A$ ,  $plc(A) \subseteq cl(A) \subseteq A \subseteq U$ . Hence  $pcl(A) \subseteq U$ . Thus every gp-open set U containing A contains pcl(A). Therefore A is  $\alpha g^*p$ -closed.

**Theorem 3.18:** If A is an  $\alpha g^*p$ -closed set in  $(X, \tau)$  if and only if  $\alpha cl(A) - A$  contains no nonempty gp-closed set in  $(X, \tau)$ .

**Proof:** Let F be a gp-closed set contained in  $\alpha cl(A) - A$ . Then  $A^c \subseteq F^c$  and  $F^c$  is a gp-open set of  $(X, \tau)$ . Since A is  $\alpha g^*p$ -closed set,  $\alpha cl(A) \subseteq F^c$ . This implies  $F \subseteq X - \alpha cl(A)$ . Then  $F \subseteq (X - \alpha cl(A)) \cap (\alpha cl(A) - A)$ .  $F \subseteq (X - \alpha cl(A)) \cap \alpha cl(A) = \phi$ . Therefore  $F = \phi$ .

Conversely, suppose that  $\alpha cl(A) - A$  contain no non-empty gp-closed set in  $(X, \tau)$ . Let G be a gp-open such that  $A \subseteq G$ . If  $\alpha cl(A) \not\subset G$ , then  $\alpha cl(A) \cap G^c$  is a non-empty gp-closed set of  $\alpha cl(A) - A$ . which is a contradiction. Therefore  $\alpha cl(A) \subseteq G$  and hence A is an  $\alpha g^*p$ -closed set in  $(X, \tau)$ .

**Theorem 3.19:** If a subset A of a topological space  $(X, \tau)$  is  $\alpha g^*p$ -closed such that  $A \subseteq B \subseteq \alpha cl(A)$ , then B is also  $\alpha g^*p$ -closed.

**Proof:** Let U be a gp-open set in X such that  $B \subseteq U$ , then  $A \subseteq U$ . Since A is  $\alpha g^*p$ -closed,  $\alpha cl(A) \subseteq U$ . By hypothesis,  $B \subseteq \alpha cl(A)$  and hence  $\alpha cl(B) \subseteq \alpha cl(\alpha cl(A)) = \alpha cl(A) \subseteq U$ . Consequently,  $\alpha cl(B) \subseteq U$ . Therefore B is also  $\alpha g^*p$ -closed set in  $(X, \tau)$ .

**Theorem 3.20:** If A is gp-open and  $\alpha g^*p$ -closed set, then A is  $\alpha$ -closed set.

**Proof:** Let  $A \subseteq A$ , where A is gp-open. Then  $\alpha cl(A) \subseteq A$  as A is  $\alpha g^*p$ -closed in  $(X, \tau)$ . But A  $\subseteq \alpha cl(A)$  is always true. Therefore  $A = \alpha cl(A)$ . Hence A is  $\alpha$ -closed set in  $(X, \tau)$ .

**Theorem 3.21:** Let  $A \subseteq Y \subseteq X$  and suppose that A is  $\alpha g^*p$ -closed set in X, then A is  $\alpha g^*p$ -closed relative to Y.

**Proof:** Given that  $A \subseteq Y \subseteq X$  and A is  $\alpha g^*p$ -closed set in  $(X, \tau)$ . To prove that A is  $\alpha g^*p$ -closed relative to Y. Let  $A \subseteq Y \cap G$ , where G is open and so gp-open in  $(X, \tau)$ . Since A is an  $\alpha g^*p$ -

closed set in X,  $A \subseteq G$  which implies that  $\alpha cl(A) \subseteq G$ . That is  $Y \cap \alpha cl(A) \subseteq Y \cap G$ . where  $Y \cap \alpha cl(A)$  is the  $\alpha$ -closure of A of Y. Thus A is  $\alpha g^*p$ -closed relative to Y. We introduce the following

**Definition 3.22:** A subset A of topological space (X,  $\tau$ ) is called  $\alpha g^*$ - pre open (briefly  $\alpha g^* p$ -open) set if its complement A<sup>c</sup> is  $\alpha g^* p$ -closed.

**Theorem 3.23:** A subset A of a topological space X is  $\alpha g^*p$ -open if and only if  $F \subseteq \alpha int(A)$  whenever  $F \subseteq A$  and F is gs-closed.

#### **References:**

[1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmud,  $\beta$ -open sets and  $\beta$ continuous mappings, Bull. Fac. Sci. Assint Univ., 12(1983), 77-90

[2] D. Andrijevic, Semi-pre-open sets, Mat. Vesnik, 38(1) (1986), 24-32.

[3] S. P. Arya and T.M.Nour, Characterization of s-normal spaces, Indian J. Pure appl. Math., 21(8) (1990), 717-719.

[4] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian. J. Math., 29(3) (1987), 375-382.

[5] **N. Biswas,** on characterization of semi-continuous functions, Atti. Accad. Naz. Lincei Rend, Cl.Sci.Fsi.Mat.Natur, 48(1970), 399-402

[6] J. Dontchev, On generalizing semi-pre open sets, Mem. Fac. Kochi Univ. (Math.), 16(1995), 35-48.

[7] Y. Gnanambal On generalized pre-regular closed sets in topological spaces, Indian. J. Pure appl. Math., 28(3) (1997), 351-360

[8] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.

[9] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2) (1970), 89-96.

[10] **A. S. Mash hour, M. E. Abd El-Monsef and S. N. EL-Deeb**, On pre-continuous and weak pre-continuous mappings, Proc. Math and Phys. Soc. Egypt, 53 (1982), 47-53.

[11] A. S. Mash hour, I. A. Hasanein and S. N. EL-Deeb,  $\alpha$ -continuous and  $\alpha$ -open mappings, Acta Math. Hung., 41(3-4)(1983), 213-218.

[12] **H. Maki, R. Devi and K. Balachandran**, Generalized  $\alpha$ -closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.

[13] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized  $\alpha$ -closed sets and  $\alpha$ -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15(1994), 51-63.

[14] **H. Maki, J. Umehara and T. Noiri**, Every topological space is  $pre-T_{1/2}$ , Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 17(1996), 33-42.

[15] **O. Njastad**, on some classes of nearly open sets, Pacific. J. Math., 15(1965), 961-970.

[16] K. Nono, R. Devi, M. Devipriya, K. Muthukumaraswamy and H. Maki, On  $g^{\#}\alpha$ closed sets and the digital plane, Bull. Fukuoka Univ. Ed. Part III, 53(2004), 15-24.

[17] M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer.Math. Soc., 41 (1937), 374-481.

[18] **P. Sundaram,** Studies on generalizations of closed sets and continuous maps in topological spaces, Ph.D., thesis, Bharathiar University, Coimbatore (1991).

[19] M. K. R. S. Veera Kumar, g\*-pre closed Sets, Acta Ciencia Indica Vol.28, No 1(2002)51-60

[20] M. K. R. S. Veera Kumar, On α-generalized-regular closed sets, Indian Journal of Mathematics Vol.44, No.2, (2002), 165-181